Electromagnetism

September 12, 2005

Work 4 of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

(Nakotte) In electro*statics*, the Maxwell stress tensor is given by

$$T_{\alpha\beta} = \frac{1}{4\pi} (E_{\alpha} E_{\beta} - E^2 \delta_{\alpha\beta}/2) \; .$$

a.) Show that

$$\int_{\partial V} T_{\alpha\beta} ds_{\alpha} = \int_{V} \rho E_{\beta} dV \; ,$$

where V is a volume with boundary ∂V , $d\vec{s}$ is the infinitesimal surface element on the boundary, ρ is the charge density and \vec{E} is the electric field.

b.) Use this result to calculate the net force which the two hemispheres of a uniformly charged solid sphere with radius R and total charge Q exert on each other.

(Kanim)

Consider a solid copper wire of radius a conducting a current I. Assume that the wire has a conduction electron velocity v that is uniform throughout the volume of the wire. Let the lattice volume charge density ρ^+ (i.e., the charge density due to all charges *except* the conduction electrons) also be constant throughout the wire. In the reference frame of the lattice:

- a.) Find the radial electric field $\vec{E}^+(r)$ inside the wire due to the lattice alone.
- b.) Find an expression for the radial electric field $\vec{E}^{-}(r)$ inside the wire due to the conduction electrons alone, in terms of an integral over the conduction electron charge density $\rho^{-}(r, v)$.
- c.) Find an analogous expression for the radial magnetic field $\vec{B}^-(r)$ inside the wire due to the conduction electrons.
- d.) Show that $\rho^{-}(r, v)$ is in fact independent of r under the given conditions.
- e.) Find $\rho^{-}(v)$ in terms of ρ^{+} .
- f.) Assume the wire is neutral overall. What is the surface charge density of the wire?
- g.) Estimate this surface charge density for a household wire with a diameter of 2 mm and a current of 5 A.

(Vasiliev)

An electron with the kinetic energy $E_{kin} = 10$ keV flies through a parallel plate capacitor. The potential difference between the plates of the capacitor is V = 40 V. The length of the capacitor is $l_1 = 10$ cm and the distance between the plates is d = 1 cm. Calculate the lateral displacement of the electron, Δx , on a screen located at a distance $l_2 = 20$ cm from the capacitor.

(Armstrong)

The electric and magnetic fields a distance d from an infinite wire carrying a current

$$I = 0 \ (t \le 0), \ I = \alpha t \ (t > 0)$$

may be described by scalar and vector potentials at point P.

$$V = 0, \quad \mathbf{A} = \frac{\mu_0 \hat{\mathbf{k}}}{4\pi} \int dz \frac{I(t_r)}{R}$$

where t_r is the retarded time, $R = \sqrt{z^2 + d^2}$ and $\hat{\mathbf{k}}$ is a fixed unit vector along the z axis.

a) From your knowledge of currents in wires, justify setting V = 0 above.

b) Explain why **A** remains zero for some initial time $t_0 > 0$ after the current in the wire begins (what is t_0 ?).

c) For a given time t > 0, only a finite length of the wire, $-z_{max} \le z \le +z_{max}$, is responsible for **A**. What is z_{max}

d) For $t > t_0$ compute **A**.

e) You don't need to compute anything here, but simply state how, knowing \mathbf{A} and V, you would compute \mathbf{E} and \mathbf{B} (be as quantitative as you can).

(Urquidi) The circuital form of the Biot-Savart law is

$$\vec{B}(r_t) = \frac{\mu_0 I_s}{4\pi} \oint_s \frac{d\vec{r}_s \times \hat{R}_{st}}{R^2}$$
(1)

It is possible to obtain from this form a simple, yet very useful result, namely:

$$\oint \vec{B} \cdot d\vec{r} = \mu_0 I \tag{2}$$

From this we can use what we know about magnetostatics to find that $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$. If \vec{J} is known everywhere, we then know $\vec{\nabla} \times \vec{B}$ everywhere. This is half the knowledge required by the Helmholtz theorem for the determination of \vec{B} itself. Derive (2) using (1) as your starting point.