# Electromagnetism 

September 12, 2005
Work 4 of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

## Problem 1

(Nakotte)
In electrostatics, the Maxwell stress tensor is given by

$$
T_{\alpha \beta}=\frac{1}{4 \pi}\left(E_{\alpha} E_{\beta}-E^{2} \delta_{\alpha \beta} / 2\right) .
$$

a.) Show that

$$
\int_{\partial V} T_{\alpha \beta} d s_{\alpha}=\int_{V} \rho E_{\beta} d V
$$

where $V$ is a volume with boundary $\partial V, d \vec{s}$ is the infinitesimal surface element on the boundary, $\rho$ is the charge density and $\vec{E}$ is the electric field.
b.) Use this result to calculate the net force which the two hemispheres of a uniformly charged solid sphere with radius $R$ and total charge $Q$ exert on each other.

## Problem 2

## (Kanim)

Consider a solid copper wire of radius $a$ conducting a current $I$. Assume that the wire has a conduction electron velocity $v$ that is uniform throughout the volume of the wire. Let the lattice volume charge density $\rho^{+}$(i.e., the charge density due to all charges except the conduction electrons) also be constant throughout the wire. In the reference frame of the lattice:

a.) Find the radial electric field $\vec{E}^{+}(r)$ inside the wire due to the lattice alone.
b.) Find an expression for the radial electric field $\vec{E}^{-}(r)$ inside the wire due to the conduction electrons alone, in terms of an integral over the conduction electron charge density $\rho^{-}(r, v)$.
c.) Find an analogous expression for the radial magnetic field $\vec{B}^{-}(r)$ inside the wire due to the conduction electrons.
d.) Show that $\rho^{-}(r, v)$ is in fact independent of $r$ under the given conditions.
e.) Find $\rho^{-}(v)$ in terms of $\rho^{+}$.
f.) Assume the wire is neutral overall. What is the surface charge density of the wire?
g.) Estimate this surface charge density for a household wire with a diameter of 2 mm and a current of 5 A .

## Problem 3

(Vasiliev)
An electron with the kinetic energy $E_{k i n}=10 \mathrm{keV}$ flies through a parallel plate capacitor. The potential difference between the plates of the capacitor is $V=40 \mathrm{~V}$. The length of the capacitor is $l_{1}=10 \mathrm{~cm}$ and the distance between the plates is $d=1 \mathrm{~cm}$. Calculate the lateral displacement of the electron, $\Delta x$, on a screen located at a distance $l_{2}=20 \mathrm{~cm}$ from the capacitor.


## Problem 4

## (Armstrong)

The electric and magnetic fields a distance $d$ from an infinite wire carrying a current

$$
I=0(t \leq 0), I=\alpha t(t>0)
$$

may be described by scalar and vector potentials at point P .

$$
V=0, \quad \mathbf{A}=\frac{\mu_{0} \hat{\mathbf{k}}}{4 \pi} \int d z \frac{I\left(t_{r}\right)}{R}
$$

where $t_{r}$ is the retarded time, $R=\sqrt{z^{2}+d^{2}}$ and $\hat{\mathbf{k}}$ is a fixed unit vector along the $z$ axis.

a) From your knowledge of currents in wires, justify setting $V=0$ above.
b) Explain why A remains zero for some initial time $t_{0}>0$ after the current in the wire begins (what is $t_{0}$ ?).
c) For a given time $t>0$, only a finite length of the wire, $-z_{\max } \leq z \leq+z_{\max }$, is responsible for $\mathbf{A}$. What is $z_{\text {max }}$
d) For $t>t_{0}$ compute $\mathbf{A}$.
e) You don't need to compute anything here, but simply state how, knowing A and $V$, you would compute $\mathbf{E}$ and $\mathbf{B}$ (be as quantitative as you can).

## Problem 5

(Urquidi)
The circuital form of the Biot-Savart law is

$$
\begin{equation*}
\vec{B}\left(r_{t}\right)=\frac{\mu_{0} I_{s}}{4 \pi} \oint_{s} \frac{d \vec{r}_{s} \times \hat{R}_{s t}}{R^{2}} \tag{1}
\end{equation*}
$$

It is possible to obtain from this form a simple, yet very useful result, namely:

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{r}=\mu_{0} I \tag{2}
\end{equation*}
$$

From this we can use what we know about magnetostatics to find that $\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}$. If $\vec{J}$ is known everywhere, we then know $\vec{\nabla} \times \vec{B}$ everywhere. This is half the knowledge required by the Helmholtz theorem for the determination of $\vec{B}$ itself. Derive (2) using (1) as your starting point.

