Classical Mechanics

September 12, 2007
Work 2 of the 3 problems. Please put each problem solution on a separate sheet of paper and put your name on each sheet.

Problem 1

Find the period of a plane pendulum without assuming small angles. Use variables: τ for the period, g for the acceleration due to gravity, ℓ for the length of the pendulum, and θ_{0} for the maximum angle. Use θ as the generalized coordinate. Find the answer to fourth order in θ_{0}, i.e.

$$
\tau=2 \pi \sqrt{\frac{\ell}{g}}\left(1+\frac{1}{16} \theta_{0}^{2}+\frac{11}{3072} \theta_{0}^{4} \ldots\right)
$$

Problem 2

A flywheel of moment of inertia I rotates about its center in a horizontal plane. A mass m can slide freely along one of the spokes and is attached to the center of the wheel by a spring of natural length l_{0} and force constant k, as shown in the figure:

a. Find the Lagrangean for this system.
b. Derive the equations of motion from this Lagrangean.
c. Show that the total angular momentum of the system is a constant of motion.
d. Derive an expression for the equilibrium distance, r_{0}, of the mass from the center of the flywheel, assuming a constant angular velocity, Ω_{0}.
e. Suppose that the mass has reached its equilibrium distance, r_{0}, for a given angular velocity, Ω_{0}. Now the mass is slightly displaced from its equilibrium distance, r_{0}. Show that the angular frequency, ω, of the small oscillations is given by:

$$
\omega=\sqrt{\frac{k}{m}+\left(\frac{3 m r_{0}^{2}-I}{I+m r_{0}^{2}} \Omega_{0}^{2}\right)} \equiv \sqrt{q}
$$

(Note: After the mass is released, the instantaneous angular velocity does not have to coincide with $\Omega_{0} \Longrightarrow$ the replacement of $\dot{\theta}$ with Ω_{0} is not justified.)
f. Explain what type of motion you find if q is negative.

Hint: $\frac{1}{(1+x)^{2}} \approx 1-2 x$

Problem 3

A particle of mass m moves under the influence of the central potential

$$
V(r)=-\frac{k}{r^{4}} \quad(k>0)
$$

At time $t=0$ the particle is at $r=r_{0}$ and is given a velocity of magnitude v_{0} directed at an angle of 45° with respect to the radial (outward) direction. Calculate the minimum value of v_{0} for which the particle will escape to infinity.
(Suggestion; Express your answer in terms of the dimensionless quantity $x=\frac{m v_{0}^{2} r_{0}^{4}}{k}$.)

