# Quantum Mechanics 

September 7, 2007
Work 4 of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

## Problem 1

Consider the elastic scattering of a low energy particle of mass, $\mu$, and energy, $E$, from the "hard sphere" potential:

$$
\begin{aligned}
V(r)=\infty, & r \leq a \\
=0, & r>a
\end{aligned}
$$

(a) Derive an expression for $\tan \delta_{\ell}$ where $\delta_{\ell}$ is the phase shift in partial wave $\ell$ and show that for $\ell=0$,

$$
\tan \delta_{0}=-\tan k a
$$

where $k^{2}=2 \mu E / \hbar^{2}$.
(b) Show that the low-energy limit of the elastic cross section, $\sigma_{0}$ is given by

$$
\lim _{k \rightarrow 0} \sigma_{0}=4 \pi a^{2}
$$

(c) Obtain an expression for the s-wave contribution to the scattering amplitude, $f(0)$, and verify the optical theorem

$$
\sigma_{\text {Total }}=\frac{4 \pi}{k} \operatorname{Im} f(0)
$$

for $k a \ll 1$.

## Problem 2

Consider the Schrödinger equation in one dimension for a particle of mass $m$ bound in a linear potential

$$
V(x)=\frac{\hbar^{2} a^{3}}{2 m}|x| .
$$

Calculate the variational estimate of the ground-state energy using the trial wave function

$$
\psi_{T}(x)=e^{-\frac{1}{2} \alpha^{2} x^{2}} .
$$

Use $\alpha$ as the variational parameter.

## Problem 3

The force constant $k$ of the $C$ - $O$ bond in carbon monoxide is $1.87 \cdot 10^{6} \mathrm{~g} / \mathrm{s}^{2}$. Assuming that the vibrational motion of $C O$ is purely harmonic and using the reduced mass $\mu=6.875 \mathrm{amu}$ :
a. Calculate the spacing between vibrational energy levels in this molecule in units of ergs and $\mathrm{cm}^{-1}$.
b. Calculate the uncertainty $\Delta x=\sqrt{\left\langle(x-\langle x\rangle)^{2}\right\rangle}$ in the internuclear distance $x$ in this molecule, assuming it is in its ground vibrational level.
c. Under what circumstances (i.e., large or small values of $k$; large or small values of $\mu$ ) is the uncertainty in internuclear distance large? Comment on any relationship between this observation and the fact that helium remains a liquid down to absolute zero.

## Problem 4

For scattering of slow neutrons off protons, calculate the probability that the neutron will flip its spin, as a function of the singlet and triplet scattering amplitudes $a_{0}$ and $a_{1}$, when the beam and target spins are opposite.
Hint: For slow neutrons you only need to consider the lowest partial wave.

## Problem 5

This is a multiple choice test. Do NOT show your work! Note question V on the back.
I. True or False:

Because of the symmetrization postulate, the three-particle wavefunction for three identical ( $\operatorname{spin} 1 / 2$ ) fermions, all with spin up, can always be written in the form
$\psi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right) \psi_{3}\left(x_{3}\right)-\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{3}\right) \psi_{3}\left(x_{2}\right)-\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right) \psi_{3}\left(x_{3}\right)$
$-\psi_{1}\left(x_{3}\right) \psi_{2}\left(x_{2}\right) \psi_{3}\left(x_{1}\right)+\psi_{1}\left(x_{3}\right) \psi_{2}\left(x_{1}\right) \psi_{3}\left(x_{2}\right)+\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{3}\right) \psi_{3}\left(x_{1}\right)$ with suitable $\psi_{1}, \psi_{2}$, and $\psi_{3}$.
true $\bigcirc$
false $\bigcirc$
II Consider 2 indistinguishable spinless bosons each bound in the same central potential $V(r)$, i.e.

$$
V=V\left(r_{1}\right)+V\left(r_{2}\right)
$$

The bosons are not interacting with each other, only with the potential $V$.
a.) What is the degeneracy of the system in its ground state?
b.) What is the degeneracy of the system in its first excited state?
III. Consider a particle subject to the Hamiltonian

$$
H=\frac{1}{2 m} \vec{p}^{2}+V(r)+\gamma\left(x^{2}+z^{2}\right)+\gamma \vec{r} \cdot \vec{S}
$$

where $\vec{S}=\frac{1}{2} \vec{\sigma}$ is the spin and $\gamma$ is a constant. Check all that apply.
a. $\vec{L} \cdot \vec{S}$ is conserved
b. $\vec{r} \cdot \vec{S}$ is conserved
c. $L_{x}+S_{x}$ is conserved
d. $L_{y}+S_{y}$ is conserved
e. $L_{z}+S_{z}$ is conserved
f. $\vec{L}^{2}$ is conserved
g. $\vec{S}^{2}$ is conserved
h. parity is conserved
i. energy is conserved
j. none of the above

Note: You get 1 point for every correct checkmark and $-1 / 2$ for every wrong checkmark. However, the total points on this question cannot be less than 0 .
IV. For the potential in the previous problem, check all correct statements
a. The ground state has $\vec{L}^{2}=0$
b. The ground state has $L_{x}=0$
c. The ground state has $L_{y}=0$
d. The ground state has $L_{z}=0$
e. The ground state has positive parity

Note: You get 1 point for every correct checkmark and $-1 / 2$ for every wrong checkmark. However, the total points on this question cannot be less than 0 .
V. Two indistinguishable spin $1 / 2$ fermions (both with spin up) interact through the Hamiltonian

$$
H=\frac{\vec{p}_{1}^{2}}{2 m}+\frac{\vec{p}_{2}^{2}}{2 m}+\frac{1}{2} \mu \omega^{2}\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2} .
$$

with $\mu=m / 2$.
a.) What is the energy of the ground state?
b.) What is the degeneracy of the ground state?
c.) What is the energy of the first excited state?

Note: consider only 'internal' excitations (total momentum zero)!

