Statistical Mechanics

September 24, 2008

Work 2 of the 3 problems. Please put each problem solution on a separate sheet of paper and put your name on each sheet.

Problem 1

An important quantity in statistical mechanics is the partition function Z. This function can be defined for any ensemble. Here you will use the partition function to derive a fundamental relationship in statistical mechanics and use this result to make the connection between theory and experiment:

$$Z(P,T,N) \propto \int d^{3N} q_i d^{3N} p_i \exp(-\beta H) \exp(\gamma P)$$

where $\beta = 1/k_B T$, *H* is the total energy of the system, and *P* is the pressure. As usual, the integration extends over all generalized particle coordinates q_i and particle momenta p_i . Assume the system contains *N* particles.

- a. Determine γ such that Z(P, T, N) is a partition function that belongs to the (P, T, N) ensemble. Hint: $G(P, T, N) = -\ln(Z)/\beta$. (2 points)
- b. Show the following relationship holds in the (P, T, N) ensemble:

$$\sigma_V^2 \equiv \langle V^2 \rangle - \langle V \rangle^2 = -k_B T \left. \frac{\partial \langle V \rangle}{\partial P} \right|_{T,N}$$

(4 points)

- c. This seems to be inconsistent: The fluctuations, σ_V^2 , are always positive, yet there is a minus sign on the right hand side. How can you resolve this apparent contradiction? (2 points)
- d. Comment on the significance of this formula in the context of the development of statistical mechanics in relation to laboratory experiments. Hint: Consider $\sigma_V/\langle V \rangle \equiv \sqrt{\langle V^2 \rangle - \langle V \rangle^2}/\langle V \rangle$ together with the observation that V scales linearly with the particle number N. (2 points)

.

Problem 2

Consider a system with energy levels labeled by $n = 0, 1, 2, 3, \ldots$ with energies

$$E_n = \mu_B H (2n+1) \, ,$$

where each energy level has the degeneracy $N_n = AH$ (independent of n), namely the number of states at level n is N_n . Here, H is a uniform magnetic field and A is a positive number independent of H.

a. Compute the partition function

$$Z = \sum_{states} \exp(-energy/kT) \; .$$

Note that $Z \equiv Z(T, H)$, and the free energy is $F(T, H) = -kT \ln Z(T, H)$.

b. Compute the magnetization defined by

$$M(T,H) = -\frac{\partial F(T,H)}{\partial H}$$
.

c. Is the system paramagnetic, diamagnetic, or ferromagnetic? The answer may depend on temperature. For temperatures at which it is paramagnetic or diamagnetic, compute the magnetic susceptibility

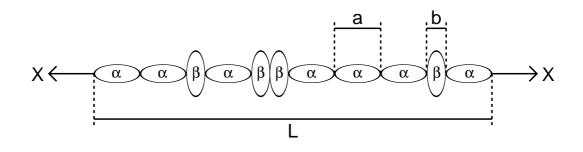
$$\chi_m = \left. \frac{\partial M(T, H)}{\partial H} \right|_{H=0}$$

.

.

Problem 3

N monomeric units are arranged along a straight line to form a chain molecule. Each monomeric unit is assumed to be capable of being either in an α state or in a β state. In the former state, the length of a unit is a and its energy is E_{α} . The corresponding values in the latter case are b and E_{β} (see figure). Derive the relation between the length L of the chain molecule and the tension X applied between both ends of the molecule. Use the canonical ensemble at constant tension.



Hint: One may take advantage of the general canonical distribution by associating with each monomeric unit an energy $E_{\alpha} - aX$ or $E_{\beta} - bX$ depending on whether the unit is in the α or the β state.