Quantum Mechanics

August 28, 2009
Work 4 of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

Given a point particle, mass m, energy $E>0$, moving in one dimension, x, in a potential energy $V(x)=\infty, x<0 ; V(x)=W_{0} \delta(x-b)$, where $W_{0}>0, b>0$ are constants.
a) Show that the Schrödinger equation for this problem is

$$
u^{\prime \prime}(x)+k^{2} u(x)=\Gamma \delta(x-b) u(x), \text { where } k^{2} \equiv 2 m E / \hbar^{2}, \quad \Gamma=2 m W_{0} / \hbar^{2}
$$

and the wavefunction $\psi(x, t)=u(x) e^{-i E t / \hbar}$.
b) Show that one boundary condition (BC) is $u^{\prime}\left(b^{+}\right)-u^{\prime}\left(b^{-}\right)=\Gamma u(b)$, also give a reason why the other BC is $u\left(b^{+}\right)=u\left(b^{-}\right)=u(b)$, where $b^{ \pm}=b \pm \epsilon, \epsilon$ infinitesimal >0.
c) Give the reasons: i) why $u(x)=0, x \leq 0$; ii) in region $1,0 \leq x<b$, why $u(x)$ may be written as $u_{1}(x)=A \sin k x$; and iii) in region $2, x>b$, why it may be written $u_{2}(x)=$ $A_{i n} e^{-i k(x-b)}+A_{r} e^{i k(x-b)}$, where we may choose $A_{i n}=1$, and A_{r} is a constant. Hint: In what direction is the wavefunction $e^{-i k x-i E t / \hbar}$ traveling?
d) Apply the BC's to these forms and show that
i) $A=-2 i / D, D \equiv \cos (k b)+(\gamma-i) \sin (k b), \gamma=\Gamma / k$
ii) $A_{r}=-D^{*} / D$.
e) Consider $\gamma \gg 1$. Show that then $|A|^{2}$ is a maximum ≈ 4 for $k b \approx n \pi$, and a minimum $\approx 4 / \gamma^{2}$ for $k b \approx\left(n+\frac{1}{2}\right) \pi, n=1,2,3, \ldots$
f) Explain why these results make sense. In particular: i) Give a physical rationale for $|A|^{2}$ being small except when $k b \rightarrow n \pi$; and ii) What is the value of the reflectivity $\left|A_{r}\right|^{2}$ in general, and what is the physical reason that it must have this value.

Problem 2

Solve the following two quantum mechanical eigenvalue problems:
a. (4 points) Determine the energy eigenvalues for the one-dimensional Schrödinger equation with

$$
V(x)= \begin{cases}-e^{2} / x & \text { for } x>0 \\ +\infty & \text { for } x<0\end{cases}
$$

Hint: The spectrum of the three-dimensional hydrogen problem with $V(r)=-e^{2} / r$ is $E_{n}=-m e^{4} /\left(2 \hbar^{2} n^{2}\right)$ with $n=1,2,3, \ldots$
(1 point) What is the degeneracy of each eigenvalue?
b. (5 points) Use the Bohr-Sommerfeld quantization rule to calculate the energy spectrum of an elastic ball which is bouncing vertically.

Problem 3

If one considers systems capable of emitting particles of half-integral spin, one encounters operators U obeying the commutation relations

$$
\begin{align*}
{\left[U, J_{z}\right] } & =\frac{1}{2} U \tag{1}\\
{\left[\left[U, J^{2}\right], J^{2}\right] } & =\frac{1}{2}\left(U J^{2}+J^{2} U\right)+\frac{3}{16} U \tag{2}
\end{align*}
$$

where \vec{J} is the angular momentum of the emitting system. Find selection rules following from (1) and (2), in a matrix representation which makes J_{z} and J^{2} diagonal (eigenvalues m and $j(j+1)$, respectively). In other words, what matrix elements $\left\langle m^{\prime} j^{\prime}\right| U|m j\rangle$ can be nonzero? (Hint: Let $X_{j}=j(j+1)$.)

Problem 4

Einstein told us that the relativistic expression for the energy of a particle having rest mass m and momentum p is $E^{2}=m^{2} c^{4}+p^{2} c^{2}$.
a. Derive an expression for the relativistic kinetic energy operator which contains terms correct through one order higher than the "ordinary"

$$
E=m c^{2}+\frac{p^{2}}{2 m}
$$

b. Treating the additional term as a perturbation, determine the first-order perturbation theory estimate of the energy for the $1 s$ level of a hydrogen-like atom (general Z). Show the Z-dependence of the result.
c. For what value of Z does the first-order relativistic correction amount to 10% of the unperturbed nonrelativistic $1 s$ energy?

Problem 5

Consider the bound-state solution of the Schrödinger equation in three dimensions for zero angular momentum and a non-singular central potential.
a) Assume that the first derivative of the wave function with respect to the spherical coordinate, r, is non-zero at the origin. Sketch the wave function as a function of z for $x=y=0$ around $z=0$. Include both the regions $z<0$ and $z>0$. Discuss the problem with the kinetic energy operator at the origin.
b) For the solution in a potential which can be expanded in an infinite series in r

$$
-\frac{2 m}{\hbar^{2}} V(r)=\sum_{n=0}^{\infty} v_{n} r^{n}
$$

show that this problem does not exist. You may find it easier to work with the function which is r times the wave function, $U(r)=r \psi(r)$ since the transformed Schrödinger equation has no first derivative term.
c) Under what conditions is the third derivative of the wave function with respect to r zero.

