Quantum Mechanics

August 28, 2009

Work 4 of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

Given a point particle, mass m, energy E > 0, moving in one dimension, x, in a potential energy $V(x) = \infty, x < 0; V(x) = W_0 \delta(x - b)$, where $W_0 > 0, b > 0$ are constants.

a) Show that the Schrödinger equation for this problem is

$$u''(x) + k^2 u(x) = \Gamma \delta(x-b)u(x)$$
, where $k^2 \equiv 2mE/\hbar^2$, $\Gamma = 2mW_0/\hbar^2$

and the wavefunction $\psi(x,t) = u(x)e^{-iEt/\hbar}$.

b) Show that one boundary condition (BC) is $u'(b^+) - u'(b^-) = \Gamma u(b)$, also give a reason why the other BC is $u(b^+) = u(b^-) = u(b)$, where $b^{\pm} = b \pm \epsilon$, ϵ infinitesimal > 0.

c) Give the reasons: i) why u(x) = 0, $x \le 0$; ii) in region 1, $0 \le x < b$, why u(x) may be written as $u_1(x) = A \sin kx$; and iii) in region 2, x > b, why it may be written $u_2(x) = A_{in}e^{-ik(x-b)} + A_re^{ik(x-b)}$, where we may choose $A_{in} = 1$, and A_r is a constant. Hint: In what direction is the wavefunction $e^{-ikx-iEt/\hbar}$ traveling?

d) Apply the BC's to these forms and show that i) A = -2i/D, $D \equiv \cos(kb) + (\gamma - i)\sin(kb)$, $\gamma = \Gamma/k$ ii) $A_r = -D^*/D$.

e) Consider $\gamma >> 1$. Show that then $|A|^2$ is a maximum ≈ 4 for $kb \approx n\pi$, and a minimum $\approx 4/\gamma^2$ for $kb \approx (n + \frac{1}{2})\pi$, n = 1, 2, 3, ...

f) Explain why these results make sense. In particular: i) Give a physical rationale for $|A|^2$ being small except when $kb \to n\pi$; and ii) What is the value of the reflectivity $|A_r|^2$ in general, and what is the physical reason that it must have this value.

Solve the following two quantum mechanical eigenvalue problems:

a. (4 points) Determine the energy eigenvalues for the one-dimensional Schrödinger equation with

$$V(x) = \begin{cases} -e^2/x & \text{for } x > 0\\ +\infty & \text{for } x < 0 \end{cases}$$

Hint: The spectrum of the three-dimensional hydrogen problem with $V(r) = -e^2/r$ is $E_n = -me^4/(2\hbar^2n^2)$ with n = 1, 2, 3, ...

(1 point) What is the degeneracy of each eigenvalue?

b. (5 points) Use the Bohr-Sommerfeld quantization rule to calculate the energy spectrum of an elastic ball which is bouncing vertically.

If one considers systems capable of emitting particles of half-integral spin, one encounters operators U obeying the commutation relations

$$[U, J_z] = \frac{1}{2}U \tag{1}$$

$$\left[\left[U, J^2 \right], J^2 \right] = \frac{1}{2} (UJ^2 + J^2U) + \frac{3}{16} U , \qquad (2)$$

where \vec{J} is the angular momentum of the emitting system. Find selection rules following from (1) and (2), in a matrix representation which makes J_z and J^2 diagonal (eigenvalues m and j(j+1), respectively). In other words, what matrix elements $\langle m'j'|U|mj\rangle$ can be nonzero? (*Hint:* Let $X_j = j(j+1)$.)

Einstein told us that the relativistic expression for the energy of a particle having rest mass m and momentum p is $E^2 = m^2 c^4 + p^2 c^2$.

a. Derive an expression for the relativistic kinetic energy operator which contains terms correct through one order higher than the "ordinary"

$$E = mc^2 + \frac{p^2}{2m}$$

- b. Treating the additional term as a perturbation, determine the first-order perturbation theory estimate of the energy for the 1s level of a hydrogen-like atom (general Z). Show the Z-dependence of the result.
- c. For what value of Z does the first-order relativistic correction amount to 10% of the unperturbed nonrelativistic 1s energy?

Consider the bound-state solution of the Schrödinger equation in three dimensions for zero angular momentum and a non-singular central potential.

a) Assume that the first derivative of the wave function with respect to the spherical coordinate, r, is non-zero at the origin. Sketch the wave function as a function of z for x = y = 0 around z = 0. Include both the regions z < 0 and z > 0. Discuss the problem with the kinetic energy operator at the origin.

b) For the solution in a potential which can be expanded in an infinite series in r

$$-\frac{2m}{\hbar^2}V(r) = \sum_{n=0}^{\infty} v_n r^n$$

show that this problem does not exist. You may find it easier to work with the function which is r times the wave function, $U(r) = r\psi(r)$ since the transformed Schrödinger equation has no first derivative term.

c) Under what conditions is the third derivative of the wave function with respect to r zero.