Quantum Mechanics
September 17, 2010

Work 4 (and only 4) of the 5 problems. Please put each problem solution on a separate sheet
of paper and your name on each sheet.

Problem 1

1. Consider a harmonic oscillator in 11 dimensions
h2 d2 1
H = + 5w Zxk

a. What is the spectrum of H?
(note: when you write F,, = ..., please be specific about the values of n)

b. What is the degeneracy of the 1% excited state?

c. What is the degeneracy of the 2"? excited state?

2. consider the two Hamiltonians

h? d? c ~ 1, d? c c
H=————-—— d H=—-h— — - ,
2mdz?  x?+a? an 2 de? 224a® (v—R)?+a?

a. What condition does ¢ have to satisfy so that the H has a bound state (ground state
energy Ey < 0)? Briefly explain your answer.

b. Assuming the parameters in this problem are such that both H and H have bound
states (with ground state energies Ey and Ej respectively). Which of the following
statement is true

O 0> E,> E,
O 0>E0:E0
O E0<E0<0

O Impossible to compare without further information about the numerical values
of a,e,m, R

Briefly explain your answer.






Problem 2

Consider a particle of mass m moving in one dimension in a potential given by
V=V for x<0; V>0

V=0for 0<z<a
V=x for z>a

a) First consider the limit as Vj — oo. Find the energies of the allowed states, E,, under
these conditions.

Now take the case for V} finite but very large. Consider only values of n for which F, /V, << 1.

b) Find the (transcendental) equation which will allow the calculation of these new bound state
energies, £/ (in terms of momenta, k/, where E/ = %k’i)

c¢) Find the transcendental equation for the shift, §,, = k!, — k,,. in momentum from the values
found in part a,

d) Expand the result in part ¢ to first order in ¢, to get an approximate solution for the energy
shift,

AE, = E, — E,.
e) Show that the fractional energy shift, AE, /E, is independent of n. Find this fractional shift.






Problem 3

Two identical non-interacting particles are in an isotropic harmonic potential. Show that the
degeneracies of the three lowest energy levels are:

(a) 1,12,39, if the particles have spin %

(b) 6, 27,99, if the particles have spin 1.






Problem 4

The spinless, neutral particle K and its antiparticle K can convert into each other through a
weak interaction: K 2 K and therefore a state produced initially as [¢(0) >= |K > at t = 0
will in general be a mixture of | > and |K > at time ¢. Furthermore, the linear combination

1
V2

has a much shorter lifetime, 75, than the orthogonal state |K; >: 7¢ < 7. (Here, lifetime is
defined in the usual sense: after a time ¢, measured in the particles rest frame, out of an initial
number N(0) there will remain N(¢) = N(0)e~/™ particles.) The masses of the two states are
mg and mp, respectively.

|Ks >= —= [|K > +|K >]

(a) Write expressions for the amplitudes A;(t), i = S, L for the two states in terms of the
so-called widths I'; = /7 the masses m;, and the initial amplitudes A;(0) at t = 0, where
t is measured at the corresponding state’s rest frame. (Hint: What is the total energy of
a particle in its rest frame?) (2 points)

(b) Consider a state that is produced at ¢ = 0 as pure K. Calculate the probability P(K;t)
that the state will be K after a time t. (3 points)

(c) After a time ¢t > 7g, the |Kg > state has essentially disappeared. What is the state i) >
at this point, in terms of |K > and |K >? (2 points)

(d) The states |K > and |K >, being those of a particle and its antiparticle, interact differently
with matter. Define f and f to be the probabilities that a K or a K will be absorbed (and
therefore disappear) if the state in (c) passes through a given amount of matter. Explain
why the long-vanished, short-lived state |Kg > will reappear under these conditions and
calculate the content of K in this final state, i.e., the probability that this state will be
a Kg. (3 points)






Problem 5

Consider an electron constrained to move on the surface of a sphere of radius ry. The Hamil-
tonian for such motion consists of a kinetic energy term only and is given by

Z;Z
Hoz2 5
meT

where L is the orbital angular momentum operator involving derivatives with respect to the
spherical polar coordinates 6, ¢. Hy has the complete set of eigenfunctions

0
;nz = )77n1(0,§b)
a. Compute the energy levels of this system in the absence of any perturbation.

b. A uniform electric field is applied along the z-axis, introducing a perturbation

V = —eez = —eergcost

where € is the strength of the field. Evaluate the correction to the energy of the lowest
level through second-order perturbation theory, using the identity

€030 Vi (0, ) ((l+m+1)(l—m+

1) 1/2
(21 +1)(20 + 3) ) Yie1m (0, 0)

(l + 77@)([ _ 771) 1/2
’ ((21 + 1)(20 — 1)) Yio1m(0, )

Note that the identity enables you to utilize the orthonormality of the spherical harmonics.

c. The electric polarizability « gives the response of a molecule to an externally applied
electric field and is defined by
OPE
0€?
where E is the energy in the presence of the field and € is the strength of the field.
Calculate « for this system.

o =

d. Use this problem as a model to estimate the polarizability of a hydrogen atom, where
ro = ap = 0.529 A, and a cesium atom, which has a single 6s electron with ry ~ 2.60 A.



