Quantum Mechanics

September 17, 2010
Work 4 (and only 4) of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

1. Consider a harmonic oscillator in 11 dimensions

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{k=1}^{11} \frac{d^{2}}{d x_{k}^{2}}+\frac{1}{2} m \omega^{2} \sum_{k=1}^{11} x_{k}^{2}
$$

a. What is the spectrum of H ?
(note: when you write $E_{n}=\ldots$, please be specific about the values of n)
b. What is the degeneracy of the $1^{\text {st }}$ excited state?
c. What is the degeneracy of the $2^{\text {nd }}$ excited state?
2. consider the two Hamiltonians

$$
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}-\frac{c}{x^{2}+a^{2}} \quad \text { and } \quad \tilde{H}=-\frac{1}{2} \hbar^{2} \frac{d^{2}}{d x^{2}}-\frac{c}{x^{2}+a^{2}}-\frac{c}{(x-R)^{2}+a^{2}} .
$$

a. What condition does c have to satisfy so that the H has a bound state (ground state energy $\left.E_{0}<0\right)$? Briefly explain your answer.
b. Assuming the parameters in this problem are such that both H and \tilde{H} have bound states (with ground state energies E_{0} and \tilde{E}_{0} respectively). Which of the following statement is true

O $\quad 0>E_{0}>\tilde{E}_{0}$
O $\quad 0>E_{0}=\tilde{E}_{0}$
O $\quad E_{0}<\tilde{E}_{0}<0$
O Impossible to compare without further information about the numerical values of a, c, m, R

Briefly explain your answer.

Problem 2

Consider a particle of mass m moving in one dimension in a potential given by

$$
\begin{gathered}
V=V_{0} \text { for } x<0 ; \quad V_{0}>0 \\
V=0 \text { for } 0 \leq x \leq a \\
V=\infty \text { for } x>a
\end{gathered}
$$

a) First consider the limit as $V_{0} \longrightarrow \infty$. Find the energies of the allowed states, E_{n}, under these conditions.

Now take the case for V_{0} finite but very large. Consider only values of n for which $E_{n} / V_{0} \ll 1$.
b) Find the (transcendental) equation which will allow the calculation of these new bound state energies, E_{n}^{\prime}, (in terms of momenta, k_{n}^{\prime} where $E_{n}^{\prime}=\frac{\hbar^{2}}{2 m} k_{n}^{\prime 2}$).
c) Find the transcendental equation for the shift, $\delta_{n} \equiv k_{n}^{\prime}-k_{n}$. in momentum from the values found in part a,
d) Expand the result in part c to first order in δ_{n} to get an approximate solution for the energy shift,

$$
\Delta E_{n} \equiv E_{n}^{\prime}-E_{n}
$$

e) Show that the fractional energy shift, $\Delta E_{n} / E_{n}$ is independent of n. Find this fractional shift.

Problem 3

Two identical non-interacting particles are in an isotropic harmonic potential. Show that the degeneracies of the three lowest energy levels are:
(a) $1,12,39$, if the particles have $\operatorname{spin} \frac{1}{2}$
(b) $6,27,99, \quad$ if the particles have spin 1 .

Problem 4

The spinless, neutral particle K and its antiparticle \bar{K} can convert into each other through a weak interaction: $K \rightleftarrows \bar{K}$ and therefore a state produced initially as $|\psi(0)>=| K>$ at $t=0$ will in general be a mixture of $\mid K>$ and $\mid \bar{K}>$ at time t. Furthermore, the linear combination

$$
\left\lvert\, K_{S}>\equiv \frac{1}{\sqrt{2}}[|K>+| \bar{K}>]\right.
$$

has a much shorter lifetime, τ_{S}, than the orthogonal state $\mid K_{L}>: \tau_{S} \ll \tau_{L}$. (Here, lifetime is defined in the usual sense: after a time t, measured in the particles rest frame, out of an initial number $N(0)$ there will remain $N(t)=N(0) e^{-t / \tau}$ particles.) The masses of the two states are m_{S} and m_{L}, respectively.
(a) Write expressions for the amplitudes $A_{i}(t), i=S, L$ for the two states in terms of the so-called widths $\Gamma_{i} \equiv \hbar / \tau$ the masses m_{i}, and the initial amplitudes $A_{i}(0)$ at $t=0$, where t is measured at the corresponding state's rest frame. (Hint: What is the total energy of a particle in its rest frame?)
(2 points)
(b) Consider a state that is produced at $t=0$ as pure K. Calculate the probability $P(\bar{K} ; t)$ that the state will be \bar{K} after a time t.
(3 points)
(c) After a time $t \gg \tau_{S}$, the $\mid K_{S}>$ state has essentially disappeared. What is the state $|\psi\rangle$ at this point, in terms of $\mid K>$ and $\mid \bar{K}>$?
(d) The states $\mid K>$ and $\mid \bar{K}>$, being those of a particle and its antiparticle, interact differently with matter. Define f and \bar{f} to be the probabilities that a K or a \bar{K} will be absorbed (and therefore disappear) if the state in (c) passes through a given amount of matter. Explain why the long-vanished, short-lived state $\mid K_{S}>$ will reappear under these conditions and calculate the content of K_{S} in this final state, i.e., the probability that this state will be a K_{S}.

Problem 5

Consider an electron constrained to move on the surface of a sphere of radius r_{0}. The Hamiltonian for such motion consists of a kinetic energy term only and is given by

$$
H_{0}=\frac{L^{2}}{2 m_{e} r_{0}^{2}}
$$

where L is the orbital angular momentum operator involving derivatives with respect to the spherical polar coordinates $\theta, \phi . H_{0}$ has the complete set of eigenfunctions

$$
\psi_{l m}^{(0)}=Y_{l, m}(\theta, \phi)
$$

a. Compute the energy levels of this system in the absence of any perturbation.
b. A uniform electric field is applied along the z-axis, introducing a perturbation

$$
V=-e \epsilon z=-e \epsilon r_{0} \cos \theta
$$

where ϵ is the strength of the field. Evaluate the correction to the energy of the lowest level through second-order perturbation theory, using the identity

$$
\begin{aligned}
& \cos \theta Y_{l, m}(\theta, \phi)=\left(\frac{(l+m+1)(l-m+1)}{(2 l+1)(2 l+3)}\right)^{1 / 2} Y_{l+1, m}(\theta, \phi) \\
&+\left(\frac{(l+m)(l-m)}{(2 l+1)(2 l-1)}\right)^{1 / 2} Y_{l-1, m}(\theta, \phi)
\end{aligned}
$$

Note that the identity enables you to utilize the orthonormality of the spherical harmonics.
c. The electric polarizability α gives the response of a molecule to an externally applied electric field and is defined by

$$
\alpha=-\frac{\partial^{2} E}{\partial \epsilon^{2}}
$$

where E is the energy in the presence of the field and ϵ is the strength of the field. Calculate α for this system.
d. Use this problem as a model to estimate the polarizability of a hydrogen atom, where $r_{0}=a_{0}=0.529 \AA$, and a cesium atom, which has a single $6 s$ electron with $r_{0} \approx 2.60 \AA$.

