Statistical Mechanics

September 22, 2010

Work 2 (and only 2) of the 3 problems. Please put each problem solution on a separate sheet of paper and put your name on each sheet.

Problem 1

Consider a degenerate Fermi gas containing n particles per unit volume. Let ϵ_F be the Fermi energy of this gas.

(a) Derive an expression for the isothermal compressibility, $\kappa_T = -\frac{1}{V} (\frac{\partial V}{\partial P})_T$, of this gas at zero temperature.

(b) Derive an expression for the thermal expansion coefficient, $\alpha = \frac{1}{3V} (\frac{\partial V}{\partial T})_P$, of this gas. (*Hint: Use the chain rule for V, P, and T.*)

.

Problem 2

Paramagnetism of a stationary particle having charge q, mass m, and spin $\frac{1}{2}$, in a constant uniform magnetic field **B**.

a) The conventional treatment assumes a magnetic moment $\boldsymbol{\mu} = (gq/2mc)\mathbf{S}$, where g is the "g-factor" ($g \approx 2$ for electrons), \mathbf{S} is the spin angular momentum operator, with eigenvalues $\pm \frac{1}{2}\hbar$ for S_z , so that the eigenvalues of μ_z are

$$\mu_z = \pm gq\hbar/4mc \equiv \pm \mu_B \tag{1}$$

where μ_B is the Bohr magneton.

Let H_P be the Pauli Hamiltonian, $H_P = -\boldsymbol{\mu} \cdot \mathbf{B} = -\boldsymbol{\Omega} \cdot \mathbf{S}$ where $\boldsymbol{\Omega} = gq\mathbf{B}/2mc$. The eigenvalues of H_P are $E_{\pm} = \pm \hbar \Omega_z/2$ (**B** in the z-direction).

i) What is the (single particle) partition function Z for temperature T?

ii) The expectation $\langle \mu_z \rangle$ is defined by

$$<\mu_z>=Z^{-1}[\mu_+e^{-\beta E_+}+\mu_-e^{-\beta E_-}]$$
(2)

where $\beta \equiv (k_B T)^{-1}$ and k_B is Boltzmann's constant. Show that

$$<\mu_z>=\mu_B \tanh(\beta\hbar\Omega_z/2)$$
 (3)

b) In the 1970's, R. Young investigated quantization of a spinning extended charged particle. For a spherically symmetric particle whose center is at rest, with moment of inertia I about its center, he showed that the Hamiltonian and the magnetic moment are

$$H = \frac{1}{2I} (\mathbf{S} - I\mathbf{\Omega})^2; \quad \boldsymbol{\mu} = (gq/2mc)(\mathbf{S} - I\mathbf{\Omega})$$

i) Using appropriate eigenvalues of μ_z and H in Eq. (2), show that now

$$<\mu_z>=\mu_B[\tanh(\beta\hbar\Omega_z/2)-2I\Omega_z/\hbar].$$

ii) Consider room temperature, $k_BT = \frac{1}{40}$ eV, a large field $B_z = 10^4$ Gauss, and proton parameters, $q = e = 1.6 \times 10^{-12}$ esu, $mc^2 = 931$ MeV $\rightarrow m = 1.6 \times 10^{-24}$ g, and $I = ma^2$ with $a = 10^{-12}$ cm. Show that then $\beta \hbar \Omega_z/2 \ll 1$, so that $\langle \mu_z \rangle = \frac{1}{2} \mu_B \beta \hbar \Omega_z [1 - 4I/\beta \hbar^2)]$, and $(4I/\beta \hbar^2) \approx 2.5 \times 10^{-7}$ which is certainly negligible. (1 eV = 1.6×10^{-12} erg, $c = 3 \times 10^{10}$ cm/s.)

.

Problem 3

A rotator with principal moments of inertia A, B and C is described by the Hamiltonian

$$H = \frac{1}{2A\sin^2\theta} \left(\left(p_{\phi} - p_{\psi}\cos\theta \right)\cos\psi - p_{\theta}\sin\theta\sin\psi \right)^2 + \frac{1}{2B\sin^2\theta} \left(\left(p_{\phi} - p_{\psi}\cos\phi \right)\sin\psi + p_{\phi}\sin\theta\cos\psi \right)^2 + \frac{1}{2C}p_{\psi}^2 \right)$$

where θ , ϕ and ψ are the Euler angles.

- a. Derive the rotational partition function for this polyatomic molecule in the classical approximation, up to a constant. Hint: Carry out the integrations in the order p_{θ} , p_{ϕ} , p_{ψ} ,...
- b. Derive the specific heat of this rotator; interpret your answer.