Statistical Mechanics

September 22, 2010
Work 2 (and only 2) of the 3 problems. Please put each problem solution on a separate sheet of paper and put your name on each sheet.

Problem 1

Consider a degenerate Fermi gas containing n particles per unit volume. Let ϵ_{F} be the Fermi energy of this gas.
(a) Derive an expression for the isothermal compressibility, $\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$, of this gas at zero temperature.
(b) Derive an expression for the thermal expansion coefficient, $\alpha=\frac{1}{3 V}\left(\frac{\partial V}{\partial T}\right)_{P}$, of this gas. (Hint: Use the chain rule for V, P, and T.)

Problem 2

Paramagnetism of a stationary particle having charge q, mass m, and spin $\frac{1}{2}$, in a constant uniform magnetic field B.
a) The conventional treatment assumes a magnetic moment $\boldsymbol{\mu}=(g q / 2 m c) \mathbf{S}$, where g is the " g-factor" $(g \approx 2$ for electrons), \mathbf{S} is the spin angular momentum operator, with eigenvalues $\pm \frac{1}{2} \hbar$ for S_{z}, so that the eigenvalues of μ_{z} are

$$
\begin{equation*}
\mu_{z}= \pm g q \hbar / 4 m c \equiv \pm \mu_{B} \tag{1}
\end{equation*}
$$

where μ_{B} is the Bohr magneton.
Let H_{P} be the Pauli Hamiltonian, $H_{P}=-\boldsymbol{\mu} \cdot \mathbf{B}=-\boldsymbol{\Omega} \cdot \mathbf{S}$ where $\boldsymbol{\Omega}=g q \mathbf{B} / 2 m c$. The eigenvalues of H_{P} are $E_{ \pm}=\mp \hbar \Omega_{z} / 2$ (\mathbf{B} in the z-direction).
i) What is the (single particle) partition function Z for temperature T ?
ii) The expectation $<\mu_{z}>$ is defined by

$$
\begin{equation*}
<\mu_{z}>=Z^{-1}\left[\mu_{+} e^{-\beta E_{+}}+\mu_{-} e^{-\beta E_{-}}\right] \tag{2}
\end{equation*}
$$

where $\beta \equiv\left(k_{B} T\right)^{-1}$ and k_{B} is Boltzmann's constant. Show that

$$
\begin{equation*}
<\mu_{z}>=\mu_{B} \tanh \left(\beta \hbar \Omega_{z} / 2\right) \tag{3}
\end{equation*}
$$

b) In the 1970 's, R. Young investigated quantization of a spinning extended charged particle. For a spherically symmetric particle whose center is at rest, with moment of inertia I about its center, he showed that the Hamiltonian and the magnetic moment are

$$
H=\frac{1}{2 I}(\mathbf{S}-I \boldsymbol{\Omega})^{2} ; \quad \boldsymbol{\mu}=(g q / 2 m c)(\mathbf{S}-I \boldsymbol{\Omega})
$$

i) Using appropriate eigenvalues of μ_{z} and H in Eq. (2), show that now

$$
<\mu_{z}>=\mu_{B}\left[\tanh \left(\beta \hbar \Omega_{z} / 2\right)-2 I \Omega_{z} / \hbar\right] .
$$

ii) Consider room temperature, $k_{B} T=\frac{1}{40} \mathrm{eV}$, a large field $B_{z}=10^{4}$ Gauss, and proton parameters, $q=e=1.6 \times 10^{-12} \mathrm{esu}, m c^{2}=931 \mathrm{MeV} \rightarrow m=1.6 \times 10^{-24} \mathrm{~g}$, and $I=m a^{2}$ with $a=10^{-12} \mathrm{~cm}$. Show that then $\beta \hbar \Omega_{z} / 2 \ll 1$, so that $\left.<\mu_{z}>=\frac{1}{2} \mu_{B} \beta \hbar \Omega_{z}\left[1-4 I / \beta \hbar^{2}\right)\right]$, and $\left(4 I / \beta \hbar^{2}\right) \approx 2.5 \times 10^{-7}$ which is certainly negligible. $\left(1 \mathrm{eV}=1.6 \times 10^{-12} \mathrm{erg}, c=3 \times 10^{10}\right.$ cm / s.)

Problem 3

A rotator with principal moments of inertia A, B and C is described by the Hamiltonian

$$
\begin{aligned}
H= & \frac{1}{2 A \sin ^{2} \theta}\left(\left(p_{\phi}-p_{\psi} \cos \theta\right) \cos \psi-p_{\theta} \sin \theta \sin \psi\right)^{2} \\
& \quad+\frac{1}{2 B \sin ^{2} \theta}\left(\left(p_{\phi}-p_{\psi} \cos \phi\right) \sin \psi+p_{\phi} \sin \theta \cos \psi\right)^{2}+\frac{1}{2 C} p_{\psi}^{2}
\end{aligned}
$$

where θ, ϕ and ψ are the Euler angles.
a. Derive the rotational partition function for this polyatomic molecule in the classical approximation, up to a constant. Hint: Carry out the integrations in the order p_{θ}, p_{ϕ}, p_{ψ}, \ldots
b. Derive the specific heat of this rotator; interpret your answer.

