Classical Mechanics

August 31, 2011
Work 2 (and only 2) of the 3 problems. Please put each problem solution on a separate sheet of paper and put your name on each sheet.

Problem 1

A half-disk of radius R and mass density ρ (mass per unit area) can roll without slipping on flat surface in the $x y$-plane.

The total mass of the disk is

$$
m=\int_{\mathrm{disk}} \rho d x d y
$$

In the diagram the disk is shown in its equilibrium position. What is the frequency of small rolling oscillations of the disk with respect to equilibrium?

Problem 2
Derive Snell's Law of refraction

Problem 3

Assume that the Lagrangian for a system performing 1-dimensional motion is given by

$$
L=e^{\gamma t}\left(\frac{1}{2} m \dot{q}^{2}-\frac{1}{2} k q^{2}\right)
$$

where γ, m, and k are positive constants.
a) [$\mathbf{2}$ points] Are there any constants of motion?
b) [$\mathbf{3}$ points] Determine $\mathrm{q}(\mathrm{t})$ and describe the motion? Describe all cases.
c) [3 points] Suppose a point transformation is made to another generalized coordinate S. given by

$$
S=e^{\gamma t / 2} q
$$

What is the Lagrangian? What is the Lagrange equation? Are there any constants of motion? If so, derive their mathematical form.
d) [$\mathbf{2}$ points $]$ Describe the relationship between the two solutions. Especially comment on your findings for the constants of motion and how you reconcile any differences that you may find.

