## Statistical Mechanics

August 28, 2013

1. Calculate the average magnitude of the momentum of a photon in a blackbody radiation cavity at temperature T.

Useful equations:

$$\int_0^\infty \frac{x^{n-1}dx}{e^x - 1} = \Gamma(n)\zeta(n) , \ \Gamma(n) = (n-1)!$$
  
$$\zeta(2) \approx 1.645 , \ \zeta(3) \approx 1.202 , \ \zeta(4) \approx 1.082.$$

## Problem 2

An ideal classical gas, confined in a container with the linear size scale L, had been in thermal equilibrium at temperature T. Then a small hole of size  $a \ll L$  was opened in the wall of the container for a short time interval t such that  $a \ll v_0 t \ll L$  where  $v_0$  is the r.m.s. velocity of the molecules in equilibrium. Find the r.m.s. velocity of the escaped molecules and compare it with  $v_0$ .

On the basis of the comparison, what would be the most immediate observable effect of the gas emission?

## Problem 3

Atoms in a solid vibrate about their respective equilibrium positions with small amplitudes. Debye approximated the normal vibrations with the elastic vibrations of an isotropic continuous body and assumed that the number of vibrational modes  $g(\omega)d\omega$  having angular frequencies between  $\omega$  and  $\omega + d\omega$  is given by

$$g(\omega) = \frac{V}{2\pi^2} \left( \frac{1}{c_l^3} + \frac{2}{c_t^3} \right) \omega^2 \qquad (\omega < \omega_D)$$
$$= 0 \qquad (\omega > \omega_D)$$

Here  $c_l$  and  $c_t$  denote the velocities of longitudinal and transverse waves, respectively whilst  $\omega_D$  is the Debye frequency. The Debye frequency is given by

$$\int_0^{\omega_D} g(\omega) d\omega = 3N$$

where N is the number of atoms and hence 3N is the number of degrees of freedom. Give an expression for the specific heat of a solid at constant volume with this model. Examine its temperature dependence at high as well as at low temperatures.