Quantum Mechanics

August 22, 2014
Work 4 (and only 4) of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

Consider a particle of mass, m, moving in one dimension, x, in a potential defined by

$$
\begin{aligned}
V(x)=\infty & \text { for } x \leq 0 \\
V(x)=\frac{\hbar^{2}}{2 m} \beta x & \text { for } x>0
\end{aligned}
$$

For the purposes of this problem suppose you wish to make a variational estimate of the ground-state energy of the system.
a) Using dimensional analysis write down a formula for the result of the variational energy within an unknown dimensionless constant.
b) Calculate the variational estimate of the ground state energy using a trial wave function proportional to $x e^{-a x}$.
c) Calculate the variational estimate of the ground state energy using a trial wave function proportional to $x e^{-b x^{2}}$.
d) Which of the two estimates is closer to the true value.

Problem 2

Show that the energies of the bound states of a system with reduced mass μ decrease with increasing μ, independently of the form of the potential.

Hints: Consider a Hamiltonian $\mathcal{H}(\lambda)$ which depends on some parameter λ. Starting from the Schrödinger equation, $\mathcal{H}|\Psi\rangle=E|\Psi\rangle$ show that the eigenstate energies E_{i} depend on λ such that

$$
\frac{\partial E_{i}}{\partial \lambda}=\left\langle\frac{\partial \mathcal{H}}{\partial \lambda}\right\rangle
$$

and apply this to the case where the parameter $\lambda=\mu$, the reduced mass.

Problem 3

A particle of mass m and charge q sits in a 3D harmonic potential $V=\frac{1}{2} k\left(x^{2}+y^{2}+z^{2}\right)$. At time $t=-\infty$ the oscillator is in its ground state. It is then perturbed by a spatially uniform time-dependent electric field

$$
\begin{equation*}
\mathbf{E}(t)=A e^{-t^{2} / \tau^{2}} \hat{z} \tag{1}
\end{equation*}
$$

where A and τ are constant. Using the lowest (non-vanishing) order perturbation theory, calculate the probability that the oscillator is in an excited state at $t=\infty$.

Problem 4

Consider a two-level system described by a Hamiltonian H with $H|i\rangle=E_{i}|i\rangle, i=1,2$. For simplicity, let $E_{1}=0, E_{2}=\epsilon$. The system can furthermore decay, where the details of the decay mechanism are immaterial; the decay rates Γ_{i} of the two eigenstates are known. Now, introduce an interaction Hamiltonian H^{\prime} with nonzero matrix elements $\langle 1| H^{\prime}|2\rangle=\langle 2| H^{\prime}|1\rangle=B$. Given a large number N of such systems, subject to the full Hamiltonian $H+H^{\prime}$, which initially, at $t=0$, are all in the state $|2\rangle$, derive the number of systems which will have decayed as a function of time t.

Problem 5

1. Consider a Hamiltonian of the form

$$
H=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2}+V_{1}\left(x^{2}+z^{2}\right)+V_{2}\left(y^{2}\right)
$$

where $V_{1} \neq V_{2}$ are not further specified. Name two nontrivial operators that commute with H (nontrivial in the sense that not a constant nor H itself not $\frac{\partial}{\partial t}$. Also the two operators should not just be multiple of each other). Explain your answer. (2 points)
2. Consider two identical fermions with the same spin quantum number. Is

$$
\psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\left(y_{1}-y_{2}\right)\left[f\left(\vec{r}_{1}\right) g\left(\vec{r}_{2}\right)+f\left(\vec{r}_{2}\right) g\left(\vec{r}_{1}\right)\right]
$$

an allowed wave function for this system? Here \vec{r}_{1} and \vec{r}_{2} denote the position of the two fermions and f and g are not further specified. Explain your answer.(2 points)
3. Consider a single-particle Hamiltonian of the form

$$
H=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2}+V\left(\vec{r}^{2}\right)
$$

where V is not further specified except that it has such a shape that the Hamiltonian has several bound state solutions. Which of the following statements are true, regardless of the shape of V
(3 points)
a.) The ground state is always an s-state $(l=0)$
b.) The $1^{\text {st }}$ excited state is always an s state $(l=0)$
c.) The $1^{\text {st }}$ excited state is always a p state $(l=1)$
d.) The $1^{s t}$ excited state is either an s state $(l=0)$ or a p state $(l=1)$ and both have the same energy
e.) The $1^{\text {st }}$ excited state always has a node (goes through zero) either as a function of the radial variable or of the angular variables
f.) The $1^{\text {st }}$ excited state is never a d state $(l=2)$
4. Consider two identical fermions in one dimension (with identical spin quantum numbers) each with mass m bound together by a harmonic oscillator potential

$$
H=\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 m}+\frac{k}{2}\left(x_{1}-x_{2}\right)^{2} .
$$

What is the energy of the ground state?

