
Quantum Mechanics

August 21, 2015

Work 4 (and only 4) of the 5 problems. Please put each problem solution on a
separate sheet of paper and your name on each sheet.

Problem 1

Calculate the scattering amplitude and the total scattering cross section for the po-
tential

V (~r) = V0
e−ar

r

in the first Born approximation. What happens in the limit a → 0?

Note: The magnitude of the momentum transfer q = |~k − ~k′|, where ~k, ~k′ are the in-
and outgoing momenta, is related to the scattering angle θ via q = 2k sin(θ/2).



Problem 2

Consider a double-slit interference experiment, described by a quantum system with
two orthonormal states (call them |↑〉 and |↓〉) representing the possible paths taken
by the particles. A particle emerging in state | ↑〉 produces a wave function at the
screen of the form ψ↑(x) (where x is a coordinate along the screen) while a particle
emerging in state |↓〉 produces a wave function ψ↓(x). The evolution from the wall
with the slits to the screen is linear in the input state. As the source repeatedly spits
out particles, the screen counts how many particles hit at each location x. Suppose,
for simplicity, that ψ↑(x) = exp(ik↑x), ψ↓(x) = exp(ik↓x), where k↑, k↓ are some real
constants.

a) If the particles are all spat out in the state | ↑〉, what is the x-dependence of
the resulting pattern P↑(x)? Show a graphical plot of this distribution on the
screen.

b) If the particles are all spat out in the (normalized) state |ψ〉 = µ| ↑〉 + λ| ↓〉,
what is the x-dependence of the resulting pattern, Pψ(x)? Assume µ and λ are
real-valued.

Now we wish to take into account interactions with the environment, which we will
model by another two-state system, with Hilbert space ΩΞ. Suppose these interactions
are described by the Hamiltonian

H = σz ⊗ M

acting on Ω2 ⊗ΩΞ, where σz = |↑〉〈↑|+ |↓〉〈↓| acts on the Hilbert space Ω2 of particle
paths and M is an operator acting on the Hilbert space of the environment. Suppose
the initial state of the whole system is

|ψ0〉 = (µ|↑〉 + λ|↓〉) ⊗ |↑〉Ξ ,

and that
M = mσx = m (|↑〉〈↓| + |↓〉〈↑|)Ξ

c) Find |ψ(t)〉, the state of the whole system at time t.

d) How does the interference pattern depend on x and t? For simplicity, consider
the case where µ = λ = 1/

√
2.

e) Interpret the previous result in terms of the time-dependence of the entangle-
ment between the two qbits.

f) What would happen if instead the initial state of the environment were an
eigenvector of M?



Problem 3

Consider a “downstep” potential, which drops at x = 0 as one goes from left to right:

V (x) =

{

0 for x < 0
−V0 for x > 0

where V0 > 0.

a) In classical physics, consider a particle of mass m coming in from the left with
initial velocity vi. What happens to it at the downstep? Find the total energy
in terms of vi and the final velocity vf in terms of m, vi and V0.

b) In quantum physics, solve the time-independent Schrödinger equation (TISE)
for fixed energy E > 0 in both regions and impose appropriate boundary con-
ditions at x = 0; write down the equations for these boundary conditions.

c) Interpret these solutions as a steady flux of particles, and assume there are no
particles coming in from the right. Calculate the reflection coefficient R and
transmission coefficient T and write them in terms of E and V0. Discuss how
your answer compares to the classical result.



Problem 4

Consider an electron moving in the x-y plane with momentum ~p under the influence of
a uniform magnetic field ~B in the z-direction: ~B = Bk̂. The electron has a magnetic
moment given by

~µ = g
e

2m
~S,

where e and m are the electron charge and mass, ~S its spin, and the gyromagnetic
ratio g is not exactly 2, as predicted by the Dirac theory, but rather g = 2(1 + a),
where a is a small number that has been measured extremely precisely. You have
learned that the magnetic field causes the electron to move in a circle with “cyclotron
frequency” ω = eB/m (you don’t need to show this here); you will show that the
small deviation of g from 2 (i.e., the fact that a 6= 0) causes the electron spin to
“precess” at slightly different frequency and this can be exploited to measure this
quantity.

a) Write the Hamiltonian H for the electron in the magnetic field. Hint: The
gauge-invariant velocity operator is

~v =
1

m

(

~p − e ~A
)

,

where ~A is the electromagnetic vector potential. (1 point)

b) Show that the choice of
~A = (0, Bx, 0)

produces the right magnetic field for this problem. (1 point)

c) Compute the commutators [vi,H] of the components of ~v with the Hamiltonian;
feel free to use the choice of gauge from b). (2 points)

d) Consider the operators
O1 = Sxvx + Syvy

and
O2 = Sxvy − Syvx

and their expectation values

Ci(t) = 〈Oi〉 .

Using the Ehrenfest theorem, derive the two (coupled) differential equations
that describe the time evolution of Ci(t). (4 points)



e) A beam of electrons, initially in a state with known values C1(0) and C2(0) and

with velocity ~v enters a region of magnetic field ~B as described above. Notice
that one of the two operators in the previous step describes the projection of the
spin vector onto the velocity vector. Combining the two equations you found
in d), derive a differential equation for the time dependence of the expectation
value of this operator and solve to show how the angle between spin and velocity
changes with time. Explain how a measurement of this (periodic) motion can
be used to measure the deviation of g from the Dirac value. Verify that, if
g = 2 exactly, then the spin always follows the movement of the velocity vector.

(2 points)



Problem 5

An electron moving in a conjugated bond framework may be regarded as a particle
in a box. An externally applied electric field of strength ε interacts with the electron
in a fashion described by the perturbation

V = eε

(

x − L

2

)

where x is the position of the electron within the conjugated bond system, e is the
electron charge, and L is the length of the conjugated bond system.

a) Evaluate the first-order correction to the energy of the ground state and the

first-order wavefunction for the ground state. Make a rough sketch of ψ
(0)
grd.st. +

ψ
(1)
grd.st. as a function of x AND physically interpret the graph.

b) Using your answer from a) compute the induced dipole moment caused by the
polarization of the electron density due to the applied electric field effect

µinduced = −e

∫

dxψ∗

(

x − L

2

)

ψ

c) Determine the polarizability, α, of the electron in the ground state of the con-
jugated bond framework and explain physically why α should depend as it does
upon the length of the conjugated bond framework, L.


