Statistical Mechanics

August 26, 2015

Work 2 (and only 2) of the 3 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

A classical monatomic non-ideal gas has the equation of state

$$
\left(P+\frac{a}{v^{2}}\right)(v-b)=k T \quad, \quad \text { where } \quad v=\frac{V}{N} .
$$

The gas is initially confined to $1 / 3$ of the volume V of a container by a partition. The initial temperature of the gas is T_{0}. Then a hole is opened in the partition allowing the gas to expand into the rest of the container and attain a final volume V. The walls of the container are absolutely rigid and do not absorb or conduct heat. Find the final temperature of the gas after the expansion.

Useful relations: $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \quad, \quad C_{V}=\frac{3}{2} N k$

Problem 2

Consider a type I superconducting material with a parabolic coexistence curve separating the (uniform) superconducting and normal phases (see also figure below). Here, H is the external magnetic field and T is the temperature. Ignore the (tiny) magnetization of the normal phase. The critical field $H_{C}(T)$ separating the superconducting and the normal phase is given by:

$$
H_{C}(T)=H_{0}+a T+b T^{3}
$$

Coexistence curve between superconducting and normal phase.

Questions:
a) Why must the coefficient a be zero?
b) Calculate the latent heat per unit volume as a function of T along the coexistence curve in terms of H_{0} and T_{C} (a schematic is shown in the figure).
c) Calculate the discontinuity of the specific heat per unit volume at constant magnetic field along the coexistence curve.

Problem 3

Carbon Dioxide, CO_{2}, is a linear triatomic molecule with an electronic ground state of ${ }^{1} \Sigma_{g}{ }^{+}$. It possesses four normal modes of vibration; two bending modes and one in phase and one out of phase stretching modes $\left(f_{1}=f_{2}=667.3 \mathrm{~cm}^{-1}\right.$, $f_{3}=1383.3 \mathrm{~cm}^{-1}$, and $f_{4}=2439.3 \mathrm{~cm}^{-1}$). It also has a rotational constant $B=\hbar^{2} /(2 I)=0.390 \mathrm{~cm}^{-1}$ (where I denotes the moment of inertia). Assuming ideal behavior, evaluate the entropy and constant volume heat capacity at 298 K and 1 bar of pressure. Note that the molar mass for CO_{2} is 44 grams per mole and the gas constant R has a value of 8.314 Joules per mole-Kelvin.

