Electrodynamics

August 19, 2016

Work 4 (and only 4) of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

A point particle of mass m and magnetic dipole moment M moves on a circular orbit of radius R about a fixed magnetic dipole, moment M_{0}, located at the center of the circle. M and M_{0} are antiparallel and oriented perpendicular to plane of the orbit.
a.) Compute the velocity v of the orbiting dipole.
b.) Is the orbit stable against small in-plane perturbations? Explain.

Problem 2

An infinitely long cylindrical tube, radius a, moves at constant speed v along its axis. It carries a net charge per unit length λ, uniformly distributed over its surface. Surrounding it, at a radius b, is another cylinder, moving with the same velocity, but carrying the opposite charge $(-\lambda)$. Find:
a.) the energy per unit length stored in the fields.
b.) the momentum per unit length stored in the fields.
c.) the energy per unit time transported by the fields across a plane perpendicular to the cylinders.

Problem 3

To perform precision atomic and nuclear physics measurements, it is useful to "trap" charged particles for further study. Loosely, we consider a particle trapped if there is some restoring force that keeps the particle away from the "walls" of the apparatus.
a.) Consider a hollow, positively-charged, sphere with a proton placed at the center. Explain why this sphere does or does not trap the proton.

An alternative way to trap charged particles is by using a Penning trap as shown in the figure below. A Penning trap uses a magnetic field to constrain motion in the $\hat{x}-\hat{y}$ axes, and electrostatic repulsion to constrain motion in the \hat{z} axis. In the figure below, the electrostatic field is set up by a pair of annuli to allow radioactive beams to penetrate and decay to charged particles at the center of the trap.

b.) Assume that the length of the trap is $\ell=20 \mathrm{~cm}$ and within this length there are $N=1000$ windings. If you ignore edge effects, what is the current I that is required to produce a 1 Tesla magnetic field at the center of the trap?
c.) Assume that the diameter of the magnetic field coils is $D=6 \mathrm{~cm}$, and copper wire with radius $r=1 \mathrm{~mm}$ is used. If the resistivity of copper is $1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}$, then calculate the following:

- Total wire resistance R.
- Voltage V required to yield 100 A of current.
- Total power P at 100 A of current.
d.) Model the annulus as a ring of charge Q with radius R. What is the functional form of the electric field $E(z)$ along the beam axis \hat{z} ?
e.) If the ring of charge is 4 cm in diameter, how much charge Q is required to have a potential of 1000 V at the center of the ring?
f.) Consider a neutron decay in the Penning trap that produces a 700 eV proton (mass $=938.3 \mathrm{MeV} / \mathrm{c}^{2}=1.673 \times 10^{-27} \mathrm{~kg}$). If the magnetic field is 5 T , then what is the maximum cyclotron radius possible for this proton?

The Lorentz force law is

$$
F=q(\vec{E}+\vec{v} \times \vec{B})
$$

The equations of motion are complicated when $\vec{E} \perp \vec{B}$. In this case, the motion is still cyclotron orbits, but now the guiding center of the cyclotron orbit drifts with velocity \vec{v}_{d}.

Therefore, substitute $\vec{v}=\vec{v}_{\perp}+\vec{v}_{d}$, and require only rotational motion in this frame of reference,

$$
\begin{aligned}
F & =q\left(\vec{E}+\vec{v}_{\perp} \times \vec{B}+\vec{v}_{d} \times \vec{B}\right) \\
& \rightarrow q\left(\vec{v}_{\perp} \times \vec{B}\right) \\
& \text { when } \vec{E}=-\vec{v}_{d} \times \vec{B} .
\end{aligned}
$$

g.) Using the last constraint, calculate the vector \vec{v}_{d} as a function of \vec{E} and \vec{B} when $\vec{E} \perp \vec{B}$. Assume that there is no component of \vec{v} parallel to \vec{B}, so that we are dealing with motion in a plane perpendicular to \vec{B}. Hint: It may be helpful to assume $\vec{E}=|E| \hat{y}$ and $\vec{B}=|B| \hat{z}$ without loss of generality at intermediate steps, but give a coordinate-independent final answer.

Notes: Permeability of vacuum $\mu_{0}=4 \pi \cdot 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$; permittivity of vacuum $\epsilon_{0}=$ $1 /\left(\mu_{0} c^{2}\right)$; unit of charge $1 \mathrm{C}=1 \mathrm{As}$; unit of magnetic field $1 \mathrm{~T}=1 \mathrm{~kg} /\left(\mathrm{As}^{2}\right)$; unit of electric potential $1 \mathrm{~V}=1 \mathrm{Nm} / \mathrm{C}$; electron charge $e=1.6 \cdot 10^{-19} \mathrm{C}$.

Problem 4

a.) Consider the six depicted vector fields in two dimensions,

Which of the six vector fields cannot be written as the gradient of a scalar field? Hint: it is more than one! Briefly explain your answer. Your explanation should include drawing on the vector field depictions.
(3 points)
b.) Imagine a superconducting ring. At $t \ll 0$ no current flows through the ring. At $t=0$ a hypothetical magnetic monopole passes through the ring. Qualitatively, sketch the magnetic current flowing through the ring as a function of time. Explain your answer.
(3 points)
c.) A particle is at rest until it suddenly starts moving with velocity $v_{z}<c$. Qualitatively draw the electric field lines around the particle at time $t>0$ in the $x-z$ plane. Indicate the position $v t$ of the particle at time t in your plot. Be sure to distinguish between distances less than $c t$ and greater than $c t$ from the origin when drawing the field lines.
(4 points)

Problem 5

An optically active medium can rotate the plane of polarization of light. The susceptibility tensor of such a medium can be expressed as:

$$
\bar{\chi}=\left(\begin{array}{ccc}
\chi_{11} & i \chi_{12} & 0 \\
-i \chi_{12} & \chi_{11} & 0 \\
0 & 0 & \chi_{33}
\end{array}\right)
$$

where $\bar{\chi}$ is related to the polarizability tensor in the usual fashion. $\vec{P}=\epsilon_{0} \bar{\chi} \cdot \vec{E}$ and $\chi_{11}, \chi_{22}, \chi_{33}$ are real. Assume a plane wave propagates in this medium along the z-direction (which is also the 3-direction) with frequency ω. Use Maxwell's equation to establish the following:
a.) That in an optically active medium the propagating electromagnetic wave is transverse.
b.) Show that the medium admits electromagnetic waves with two distinct k-vectors \vec{K}_{R}, \vec{K}_{L}. Find the magnitudes of \vec{K}_{R}, \vec{K}_{L} in terms of ω and the necessary $\chi_{i j}$.
c.) Show that the two k-vectors \vec{K}_{R}, \vec{K}_{L} correspond to the propagation of rightand left-handed circularly polarized electromagnetic waves.
d.) Find an expression for the rotary power $\equiv n_{R}-n_{L}$ in terms of the $\chi_{i j}$, where n_{R}, n_{L} correspond to the refractive indices of the medium for the propagation of right- and left-handed circularly polarized light.

