Classical Mechanics

August 19, 2017

Work 2 (and only 2) of the 3 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

a.) A body of mass m is orbiting under the influence of a central force, described by a power law of the form:

$$
\vec{F}=-A r^{n} \hat{r}
$$

Show that this can be written as:

$$
\frac{1}{2} m \dot{r}^{2}=E-U^{\prime}(r)
$$

with the effective potential

$$
\begin{equation*}
U^{\prime}(r)=\frac{A r^{n+1}}{n+1}+\frac{J^{2}}{2 m r^{2}} \tag{2.5points}
\end{equation*}
$$

where $J^{2}=m r^{2} \dot{\theta}$.
b.) A mass m is attached to a pivot by a long light spring, which exerts a force $\vec{F}=-k r \hat{r}$, where r is the distance of the mass from the pivot. The mass is set in motion and performs an orbit around the pivot. Neglecting gravity and friction, consider the x and y components of the force and acceleration separately to show that an orbit of the following form is permitted:

$$
\begin{equation*}
x=a \cos \omega t \quad y=b \cos \omega t \tag{2points}
\end{equation*}
$$

c.) Show that this corresponds to an elliptical orbit.
d.) Draw a diagram showing the form of $U^{\prime}(r)$ as a function of r for this force law.
(1 point)
e.) Consider the case where the spring has the force law:

$$
\vec{F}=-k(r+d) \hat{r}
$$

where d is a constant. Find the modified expression for $U^{\prime}(r)$ and show that the mass can execute a circular orbit with radius r_{0}, such that:

$$
k\left(r_{0}+d\right)=\frac{J^{2}}{m r_{0}^{3}}
$$

f.) For the case $r_{0} \gg d$, calculate the amount that orbits which are slightly perturbed from circular will precess.

Problem 2

A satellite is placed in a low-lying orbit using a two-stage rocket. The initial orbit is launched from the Earth's surface with $v_{0}=6 \mathrm{~km} / \mathrm{s}$ and angle $\theta_{0}=30$ degrees. Upon reaching apogee, it is given a velocity boost to a new velocity v_{1} that places the rocket into a circular orbit. (Use the numerical values $M_{e}=6 \cdot 10^{24} \mathrm{~kg}, R_{e}=6371 \mathrm{~km}$ in the following).
a.) Find the velocity at apogee before the velocity boost.
b.) Find the velocity at apogee after the velocity boost.

Problem 3

A system has the Lagrangian

$$
L=f y^{2} \dot{x} \dot{z}+g \dot{y}^{2}-k \sqrt{x^{2}+y^{2}}
$$

where f, g and k are constants. What is the Hamiltonian?

