Statistical Mechanics

August 19, 2017

Work 2 (and only 2) of the 3 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

The so-called troposphere, the lower $10-15 \mathrm{~km}$ of the atmosphere, cannot be considered as isothermal. A reasonable model of the troposphere is to describe it as a convective steady state at constant entropy, where $P v^{\gamma}$ is independent of the altitude and $v \equiv V / N$ is the specific volume of the gas (adiabatic-atmosphere model).

Assume that the atmosphere is composed entirely of diatomic N_{2} molecules, which can be treated as an ideal gas.
a.) Show that $d T / d P$ at any altitude in the troposphere obeys the following relationship,

$$
\frac{d T}{d P}=\left(\frac{\gamma-1}{\gamma}\right) \frac{T}{P}
$$

b.) Show that the temperature gradient $d T / d z$ as a function of altitude in the troposphere is constant. Hint: Use the chain rule to relate $d T / d z$ to $d P / d z$. Your final answer for $d T / d z$ should depend on $\gamma, m\left(N_{2}\right)$ and g.
c.) What is the value for γ that you should use for the troposphere? Explain.
d.) Compute the temperature difference between sea level and the top of Mount Everest, which is at an altitude of 8848 m .

Values and constants that you may need:
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$k=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$
$m\left(N_{2}\right)=4.653 \cdot 10^{-26} \mathrm{~kg}$

Problem 2

Consider a gas of photons in thermal equilibrium at temperature T in a onedimensional cavity of length L.
a.) Calculate the density of states $g(\omega)$.
b.) Find the internal energy E and specific heat C_{V}.
c.) Find the entropy S, Helmholtz free energy A, and pressure P.

$$
\left(\text { Hint }: \int_{0}^{\infty} \frac{x d x}{e^{x}-1}=\frac{\pi^{2}}{6}\right)
$$

Problem 3

A mole of ${ }^{3} \mathrm{He}$ gas atoms has a volume of $0.0224 \mathrm{~m}^{3}$ at 273 K . The mass of a ${ }^{3} \mathrm{He}$ gas atom is $5.11 \cdot 10^{-27} \mathrm{~kg}$ and it has spin $\frac{1}{2}$. Calculate the value of $\exp (-\mu / k T)$, where μ is the chemical potential of the atoms, and determine the mean occupancy of a single particle state of energy E.

