Quantum Mechanics

August 16, 2018

Work 4 (and only 4) of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

Electrons are placed into the ground state and first excited state of a simple harmonic oscillator (SHO). Calculate $\left\langle\left(\hat{x}_{1}-\hat{x}_{2}\right)^{2}\right\rangle$ for the singlet and triplet spin states. In view of your results, how does accounting for the Coulomb repulsion influence the connection between spin and energy? Try to formulate a general qualitative statement. As a reminder, SHO states obey:

$$
\begin{gathered}
\mathcal{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \\
a=\left(\sqrt{\frac{m \omega}{2 \hbar}} \hat{x}+i \frac{\hat{p}}{\sqrt{2 m \hbar \omega}}\right)
\end{gathered}
$$

$$
\begin{gathered}
a|n\rangle=\sqrt{n}|n-1\rangle \\
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \\
\langle n \mid n\rangle=1
\end{gathered}
$$

Problem 2

A non-relativistic particle of mass m moves in one dimension, subject to a potential energy function $V(x)$ which is the sum of three evenly spaced, attractive delta functions:

$$
V(x)=-a V_{0} \sum_{n=-1}^{1} \delta(x-n a), \quad V_{0}, a>0
$$

a.) Calculate the discontinuity in the first derivative of the wavefunction at $x=$ $-a, 0$, and a.
b.) In bound state wavefunctions for this system, how many nodes are possible in the region $x>a$?
c.) In bound state wavefunctions for this system, how many nodes are possible in the region $0<x<a$?
d.) In bound state wavefunctions for this system, can there be a node at $x=a$?
e.) In bound state wavefunctions for this system, can there be a node at $x=0$?
f.) If V_{0} is large enough, the system will have both symmetric and antisymmetric bound states. Sketch qualitatively the lowest energy symmetric $(\psi(-x)=\psi(x))$ and antisymmetric $(\psi(-x)=-\psi(x))$ bound states.
g.) For V_{0} much larger than other energy scales in the problem, how many bound states are there?
h.) For the lowest energy antisymmetric bound state, derive a transcendental equation that determines the bound state energy. You do not need to solve the equation.

Problem 3

An electron (mass m, charge $\hat{q}=-e$) is located within a homogeneous magnetic field $\vec{B}=B \vec{e}_{z}$, where B is constant and \vec{e}_{z} a unit vector in the z-direction.
a.) (1 Point): What is the form of the classical Hamiltonian?
b.) (1 Point): Choose a vector potential $\vec{A}(\vec{x}) \equiv\left(0, A_{y}(x), 0\right)$ such that it satisfies the Coulomb gauge $\vec{\nabla} \cdot \vec{A}=0$.
c.) (4 Points): Show that the eigenvalue problem of the Hamiltonian,

$$
\hat{H} \psi=E \psi
$$

can be solved by using the ansatz

$$
\psi(\vec{r})=\psi(x, y, z)=e^{i k_{z} z} e^{i k_{y} y} \varphi(x),
$$

and that it can be reduced to the eigenvalue problem of the linear harmonic oscillator.
d.) (2 Points): Determine the eigenenergies and the eigenfunctions.

Note: The eigenenergies and eigenfunctions of the linear harmonic oscillator are well-known, you do not actually need to solve the differential equation. Simply apply the known results.
e.) Now assume that - in addition to the magnetic field - a force $\vec{F}=-m \omega^{2} z \vec{e}_{z}$ acts on the electron in z-direction. Repeat all of the steps above for this situation:
i.) (1 Point): Find the Hamiltonian and choose a vector potential as in b.) which satisfies the Coulomb gauge.
ii.) (2 Points): Find a suitable ansatz for the eigenfunction $\psi(\vec{r})=\psi(x, y, z)$ of the Hamiltonian.
iii.) (2 Points): Find the explicit form of the eigenvalues and eigenfunctions.

Problem 4

a.) For two identical spin- $\frac{1}{2}$ particles in one dimension, is the following an allowed wave function,

$$
\psi_{s_{1} s_{2}}\left(x_{1}, x_{2}\right)=\mathcal{N}\left(x_{1}-x_{2}\right) e^{-\left(x_{1}-x_{2}\right)^{2}} \cdot(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)
$$

(\mathcal{N} is an appropriate normalization factor)? You must explain how you reach your conclusion!
b.) An electron is in a state described by the wave function (in spherical coordinates)

$$
\psi(r, \theta, \phi)=\mathcal{N} r e^{-a r} \sin (\theta) \cos (\phi),
$$

where \mathcal{N} is a normalization factor such that the wave function is normalized to 1. Suppose L_{z} is measured in this state. What are the possible outcomes for the measurement of L_{z} (list only those with nonzero probability) and what are the respective probabilities?

The following spherical harmonics may be useful when solving this problem:

$$
\begin{aligned}
Y_{0}^{0} & =\frac{1}{\sqrt{4 \pi}} & Y_{1}^{ \pm 1} & =\mp \sqrt{\frac{3}{8 \pi}} \sin (\theta) e^{ \pm i \phi} \\
Y_{1}^{0} & =\sqrt{\frac{3}{4 \pi}} \cos (\theta) & Y_{2}^{ \pm 2} & =\sqrt{\frac{15}{32 \pi}} \sin ^{2}(\theta) e^{ \pm 2 i \phi} \\
Y_{2}^{ \pm 1} & =\mp \sqrt{\frac{15}{8 \pi}} \sin (\theta) \cos (\theta) e^{ \pm i \phi} & Y_{2}^{0} & =\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2}(\theta)-1\right)
\end{aligned}
$$

c.) Consider the ground state of the harmonic oscillator in 3 dimensions with an external electric field applied, $\Delta V=-e E z$, as a perturbation. In $1^{s t}$ order perturbation theory, the energy of the ground state
(1 point)
i.) increases
ii.) decreases
iii.) stays the same

In $2^{\text {nd }}$ order perturbation theory, the energy of the ground state
(1 point)
i.) increases
ii.) decreases
iii.) stays the same
d.) Shown is one of the wave functions for a particle of mass m in one dimension subject to a harmonic oscillator potential $V(x)=\frac{k}{2} x^{2}$. What is the energy of that state? Explain your answer!
(1 point)

e.) In 3 dimensions, what is the ground state energy for a particle of mass m in an infinite square well with radius R, i.e.
(1 point)

$$
V(\vec{r})=\left\{\begin{array}{cc}
0 & |\vec{r}|<R \\
+\infty & |\vec{r}|>R
\end{array}\right.
$$

Explain your answer!
f.) Two identical spin- $\frac{1}{2}$ particles of mass m in 3 dimensions, both with spin \uparrow, interact with a potential energy

$$
V\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{k}{2}\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2},
$$

where k is a constant. What is the energy of the ground state of that system? Explain your answer!

Problem 5

Evaluate the differential scattering cross section in a repulsive field,

$$
V=\frac{A}{r^{2}}
$$

in the Born approximation. Discuss under what conditions your result is applicable.

