Statistical Mechanics

August 18, 2018

Work 2 (and only 2) of the 3 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

A classical ideal gas composed of N identical particles of mass m is confined to a two-dimensional disk of radius R. The gas particles are attracted to the center of the disk by a force that increases proportionally to the distance from the center. The Hamiltonian of a single particle is given by

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{\kappa r^{2}}{2}, \tag{1}
\end{equation*}
$$

where κ is the effective spring constant of the force and r is the distance of the particle from the disk's center.
a.) Find the canonical partition function of this system.
b.) Calculate the internal energy E, Helmholtz free energy A, and pressure P of this gas.
c.) Evaluate E and P in the limits of (i) $\kappa \rightarrow 0$ and (ii) $R \rightarrow \infty$.

Problem 2

a.) The low-density occupation function applicable to an ideal gas of N particles is

$$
f(\epsilon)=\exp [(\mu-\epsilon) / k T],
$$

where $f(\epsilon)$ is the occupancy of a single-particle quantum state of energy ϵ, μ is the chemical potential, and T is the temperature. Starting from this, derive the probability distribution function for particle speed, $P(v)$, for a spinless monatomic ideal gas.
b.) A container of volume V holds N atoms of a spinless monatomic ideal gas; the container is maintained at a fixed temperature T. Imagine a small hole of area S on the wall; calculate how many particles will pass out of the hole per unit time.

Information:

The chemical potential of a three-dimensional ideal gas is $\mu=k T \ln \left[N / n_{Q} V\right]$, where $n_{Q}=\left(m k T / 2 \pi \hbar^{2}\right)^{3 / 2}$ is the quantum concentration.

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} & \int_{0}^{\infty} x e^{-x^{2}} d x=\frac{1}{2} \\
\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{4} & \int_{0}^{\infty} x^{3} e^{-x^{2}} d x=\frac{1}{2}
\end{aligned}
$$

Problem 3

The energies of an oscillator with frequency ν are given by

$$
\epsilon=\frac{1}{2} h \nu, \frac{3}{2} h \nu, \ldots,\left(n+\frac{1}{2}\right) h \nu, \ldots
$$

Consider a system containing N oscillators that can be treated as approximately independent.
a.) When the system has the total energy

$$
E=\frac{1}{2} N h \nu+M h \nu
$$

where M is an integer, find the corresponding statistical weight $W(M)$.
b.) Determine the relation between the temperature and the energy of this system.

