Statistical Mechanics

August 21, 2021

Work 2 (and only 2) of the 3 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

Problem 1

The bond distances in NH_{3} are equal to 101.4 pm , and the bond angles are equal to 107.3°.
a.) Find the location of the center of mass and the principal moments of inertia.
b.) What is the symmetry number?
c.) Calculate the rotational partition function of NH_{3} at 500 K .

Problem 2

At low densities, the virial expansion of the equation of state of a monatomic gas can be truncated at first order,

$$
P V=N k T\left(1+\frac{N}{V} B(T)+\ldots\right)
$$

with a function of temperature $B(T)$ that you can assume to be given.
Also the heat capacity will have corrections to its ideal gas value. We can write it in the form

$$
C_{V}=N k\left(\frac{3}{2}-\frac{N}{V} D(T)+\ldots\right)
$$

Find the form of $D(T)$ in terms of $B(T)$ to make these two equations thermodynamically consistent, and give also the expressions for the entropy and the internal energy to this order in terms of $B(T)$.

Problem 3

Consider some number N of electrons with spin quantum number m_{s} either $+1 / 2$ or $-1 / 2$ (written as \uparrow or \downarrow), split into two different energy levels via a uniform external magnetic field \mathbf{H} as shown in the above figure. This energy splitting is caused by the alignment of the electrons in either a parallel or an antiparallel configuration with respect to the magnetic field direction. Assume $E_{0}=0$.
a.) Determine both N_{\downarrow} and N_{\uparrow}, as well as the ratio $N_{\downarrow} / N_{\uparrow}$ using the expected Boltzmann distributions at a temperature T with a magnetic field of strength H.
b.) Determine the total magnetization M of the system as a function of N, H, and T. The magnetization is defined as $M=\left(N_{\downarrow}-N_{\uparrow}\right) \mu_{B}$. Eliminate any occurrence of N_{\downarrow} or N_{\uparrow} in your final equation.
c.) In the limit of $H \ll T$, simplify your equation. In this limit, the equation can be expressed as $M=C \frac{H}{T}$, where C is called the Curie constant. Determine an equation for the Curie constant C.

Hint: The Boltzmann distribution gives $n_{i}=A e^{-\epsilon_{i} / k T}$, where A satisfies $\sum n_{i}=N$

