Electrodynamics

August 18, 2023

Work 4 (and only 4) of the 5 problems. Please put each problem solution on a separate sheet of paper and your name on each sheet.

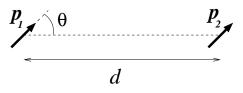
Problem 1

Lifetime of a classical atom: Consider a classical atom made of a single electron initially orbiting circularly around a proton (assume the proton is a point charge with infinite mass, and the electron is also a point charge with mass m_e in this problem), with orbital radius equal to the Bohr radius $a_0 = 4\pi\epsilon_0\hbar^2/(m_ee^2)$.

- a.) Without calculation, please comment on the fate of this classical atom and explain why.
- b.) Assume the adiabatic approximation, where the orbit changing time is much longer than the orbital period; solve for the orbit radius as a function of time r(t). Hint: the Larmor formula for the total power radiated by a nonrelativistic point charge as it accelerates is $P = \mu_0 q^2 a^2 / (6\pi c)$.
- c.) What is the lifetime of this classical atom?

Two point electric dipoles \mathbf{p}_1 and \mathbf{p}_2 lie in the same plane a constant distance d apart. The dipole \mathbf{p}_1 makes a fixed angle θ with the line connecting the centers of the two dipoles, as shown in the figure below.

- a.) Find the equilibrium angle of the dipole \mathbf{p}_2 to the line connecting the centers of \mathbf{p}_1 and \mathbf{p}_2 .
- b.) Calculate the total potential energy of this system of two dipoles in equilibrium.



Consider a Gaussian charge distribution with a different width transverse to the z-axis compared to the longitudinal width along the z-axis:

$$\rho(\vec{r}) = A \exp\left(-\frac{x^2}{2\sigma_T^2} - \frac{y^2}{2\sigma_T^2} - \frac{z^2}{2\sigma_L^2}\right) , \qquad \text{where } A = \frac{q_{\text{tot}}}{(2\pi)^{3/2}\sigma_T^2\sigma_L}$$

- a.) For the case of the longitudinal width equal to twice the transverse width, $\sigma_L = 2\sigma_T$, determine the multipole moments q_{lm} and the electrostatic potential of this distribution up through l = 2.
- b.) Assume now that the longitudinal width σ_L oscillates in time with the following form, $\sigma_L(t) = (2 \cos(\omega t))\sigma_T$. What multipole moments are expected when $\omega t = 0$, and when $\omega t = \pi/2$? Qualitatively, discuss the pattern of radiation expected in those two cases ($\omega t = 0$ and $\omega t = \pi/2$).

Some possibly useful integration forms:

$$\begin{split} &\int_{0}^{\infty} dx \, x^{n} e^{-ax^{2}} = \frac{(n-1)!!\sqrt{\pi}}{2^{(n/2)+1}} a^{-(n+1)/2} & \text{for even } n \geq 0 \\ &\int_{-1}^{1} dx \, (4-3x^{2})^{-1/2} = \frac{2\pi}{3\sqrt{3}} , &\int_{-1}^{1} dx \, x^{2} (4-3x^{2})^{-1/2} = \frac{4\pi\sqrt{3}-9}{27} \\ &\int_{-1}^{1} dx \, (4-3x^{2})^{-3/2} = \frac{1}{2} , &\int_{-1}^{1} dx \, x^{2} (4-3x^{2})^{-3/2} = -\frac{2\pi\sqrt{3}-18}{27} \\ &\int_{-1}^{1} dx \, (4-3x^{2})^{-5/2} = \frac{1}{4} , &\int_{-1}^{1} dx \, x^{2} (4-3x^{2})^{-5/2} = \frac{1}{6} \\ &\int_{-1}^{1} dx \, (4-3x^{2})^{-7/2} = \frac{3}{20} , &\int_{-1}^{1} dx \, x^{2} (4-3x^{2})^{-7/2} = \frac{7}{60} \end{split}$$

Consider a rectangular metallic waveguide, infinitely long in the z-direction, and of width (x-direction) a and height (y-direction) b. Let $a \ge b$. The lowest frequency wave that can propagate corresponds to a "transverse electric" mode for which the only non-zero electric field component is E_y .

a.) Assuming that the fields have (z, t) dependence $\exp[i(kz - \omega t)]$, show that the transverse fields for this mode are given in terms of B_z by

$$B_x = \frac{ik}{\gamma^2} \frac{\partial B_z}{\partial x}$$
 and $E_y = -\frac{i\omega}{\gamma^2} \frac{\partial B_z}{\partial x}$,

where $\gamma^2 = (\omega/c)^2 - k^2$.

b.) Show that B_z satisfies the differential equation

$$\left(\frac{\partial^2}{\partial x^2} + \gamma^2\right) B_z = 0 \; .$$

Also, what are the boundary conditions satisfied by B_z (assume that there are no currents flowing in the waveguide)?

c.) What is the minimum possible frequency of such a wave?

Properties of Gauge Fields:

a.) (2 pts.) You have designed a cavity to produce a static magnetic field of the form

$$\vec{B} = -2B_0 \left[(y+z)\hat{i} + (x-z)\hat{j} + y\hat{k} \right]$$
(1)

with B_0 a constant, and your calculations give the corresponding magnetic vector potential to be

$$\vec{A} = B_0 \left[(x^2 + y^2 + z^2)\hat{\imath} + z^2\hat{\jmath} + (x^2 - y^2 + z^2)\hat{k} \right] .$$
⁽²⁾

A rival posts a paper with their own design for a cavity to produce the desired magnetic field (1), but in their calculations they use a different magnetic vector potential

$$\vec{A}' = B_0 \left[(2x^2 + y^2)\hat{\imath} + 3y^2\hat{\jmath} + (x^2 - y^2 - 2xz - 2yz)\hat{k} \right] .$$
(3)

You are outraged that they would contradict you and begin to prepare a scathing rebuttal. Is their result wrong, or is yours? Justify your answer.

b.) (3 pts.) Find a scalar function $\Lambda(x, y, z)$ that performs the gauge transformation

$$\vec{A}' = \vec{A} + \vec{\nabla}\Lambda \tag{4}$$

between the vector potentials (2) and (3).

c.) (3 pts.) Starting with Maxwell's equations in vacuum (in CGS units),

$$\vec{\nabla} \cdot \vec{E} = 0 \qquad \vec{\nabla} \cdot \vec{B} = 0$$
$$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \qquad \vec{\nabla} \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} \qquad (5)$$

prove that the vector potential \vec{A} satisfies the wave equation

$$\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = 0 \tag{6}$$

if we choose the **Coulomb gauge condition**

$$\vec{\nabla} \cdot \vec{A} = 0 \quad , \quad \phi = 0 \tag{7}$$

where ϕ is the scalar potential.

(continued)

d.) (2 pts.) **Prove that the wave equation** (6) is invariant under the relativistic Lorentz boost

$$\begin{pmatrix} ct' \\ z' \end{pmatrix} = \begin{pmatrix} \cosh \eta & -\sinh \eta \\ -\sinh \eta & \cosh \eta \end{pmatrix} \begin{pmatrix} ct \\ z \end{pmatrix}$$
(8)

where η is a real constant parameter called the "boost rapidity."